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Abstract

Carbon nanotubes are finding significant application to nanofluidic devices. This work studies the influence of inter-
nal moving fluid on free vibration and flow-induced flutter instability of cantilever carbon nanotubes based on a con-
tinuum elastic model. Since the flow-induced vibration of cantilever pipes is non-conservative in nature, cantilever
carbon nanotubes conveying fluid are damped with decaying amplitude for flow velocity below a certain critical value.
Beyond this critical flow velocity, flutter instability occurs and vibration becomes amplified with growing amplitude.
Our results indicate that internal moving fluid substantially affects vibrational frequencies and the decaying rate of
amplitude especially for longer cantilever carbon nanotubes of larger innermost radius at higher flow velocity, and
the critical flow velocity for flutter instability in some cases may fall within the practical range. On the other hand,
a moderately stiff surrounding elastic medium (such as polymers) can significantly suppress the effect of internal moving
fluid on vibrational frequencies and suppress or eliminate flutter instability within the practical range of flow velocity.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of perfect hollow cylindrical geometry and superior mechanical strength, carbon nanotubes
(CNTs) hold substantial promise as nanocontainers for gas storage, and nanopipes conveying fluid (such
as gases or water) (Evans and Bowman, 1996; Gadd and Blackford, 1997; Liu et al., 1998; Che et al.,
1998; Hummer et al., 2001; Karlsson, 2001; Gao and Bando, 2002). Fluid flow inside CNTs raises a signif-
icant and challenging research topic. On the other hand, the influence of internal moving fluid on overall
mechanical behavior of CNTs is another topic of major concern.
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Fluid mechanics within CNTs aims to study how the wall-fluid interaction and the viscosity of fluid af-
fect velocity distribution inside CNTs, and how the velocity distribution (and the mean flow velocity) de-
pends on the applied pressure gradient in a non-classic way (Tuzun et al., 1996; Mao and Sinnott, 2000;
Gogotsi, 2001; Megaridis et al., 2002; Galanov et al., 2002; Sokhan et al., 2002; Skoulidas et al., 2002; Sup-
ple and Quirke, 2003). Since our goal is not to study fluid mechanics inside CNTs, we shall assume, instead,
that a uniform steady-state flow is achieved throughout a straight CNT, with a constant and uniform
(mean) flow velocity defined by the flow flux divided by the innermost cross-sectional area. Here, it is stated
that the uniformity of flow velocity throughout the entire CNT is a simple consequence of the uniform
cross-section if the fluid is assumed to be incompressible. Thus, the role of the internal moving fluid is char-
acterized by two parameters, the (mean) flow velocity U and the mass density of fluid M (per unit axial
length). The wall-fluid interaction and the viscosity of fluid, which substantially affect the velocity distribu-
tion and the mean flow velocity U, will not explicitly appear in the present study. In other words, the role of
the wall-fluid interaction and the viscosity of fluid is included only implicitly through their influence on the
mean flow velocity. Based on these ideas, we have recently studied the effects of internal moving fluid on
free vibration and structural instability of CNTs pinned or clamped at both ends (Yoon et al., 2005). In
that case, internal flow-induced vibration of CNTs is conservative in nature and characterized by periodic
vibration with constant amplitude, and the lowest frequency reduces to zero when a critical flow velocity is
reached. This leads to “divergence instability”’ of supported CNTs, similar to static buckling of compressed
elastic column. Our results (Yoon et al., 2005) show that internal moving fluid substantially affects vibra-
tional frequencies especially for longer CNTs of larger innermost radius at higher flow velocity, and the
critical flow velocity for “divergence instability’” of CNTs in some cases may fall within the range of prac-
tical significance.

Many proposed applications of CNTs as nanopipes are likely involved with cantilever CNTs which are
clamped at one end but free at the other end. It is known that flow-induced vibration of cantilever pipes is
non-conservative in nature and characterized by decaying or growing amplitude (Chen, 1987; Paidoussis
and Li, 1993; Paidoussis, 1998). When the flow velocity is sufficiently low, vibration of cantilever pipes fades
off with time. On the other hand, vibration amplitude will grow with time after a critical flow velocity is
reached. This phenomenon is called “flutter” which has been studied extensively within the framework
of aeroelasticity (Fung, 1993). Motivated by the idea that vibration and flutter instability of cantilever
CNTs conveying fluid are likely of both theoretical and practical interest, the present paper studies flow
induced free vibration and flutter instability of cantilever CNTs. Here, the structural behavior of CNTs
is described by the classic Euler-beam model (Ru, 2004; Yoon et al., 2005), and the role of internal moving
fluid is characterized by two parameters, the mean flow velocity U and the mass density of fluid M (per unit
axial length), as shown in Fig. 1. As will be shown below, internal moving fluid has a substantial effect on
vibrational frequencies and the decaying rate of amplitude especially for longer CNTs of larger innermost
radius at higher flow velocity, and the critical flow velocity for flutter instability could fall within the range
of practical significance at least in some extreme cases. On the other hand, a moderately stiff surrounding
elastic medium (such as polymer) can suppress or eliminate the influence of internal moving fluid on both
vibrational frequencies and flutter instability of CNTs conveying fluid.
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Fig. 1. Cantilever carbon nanotube conveying fluid of the mass density M (per unit axial length) and the mean flow velocity U.
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2. The model for cantilever CNTs conveying fluid

As shown in Fig. 1, a CNT conveying fluid will be described by a cantilever elastic hollow tube. As ad-
dressed in Ru (2004), continuum elastic-beam models have been effectively used to study static and dynamic
structural behavior of CNTs, such as static deflection (Wong et al., 1997), column buckling (Garg et al.,
1998), resonant frequencies and modes (Treacy et al., 1996; Poncharal et al., 1999), and sound wave prop-
agation (Popov et al., 2000). These studies showed that the classic Euler-elastic beam offers a simple and
reliable model for overall mechanical deformation of CNTs provided the characteristic wave-length is much
larger than the diameter of CNTs. For example, buckling force predicted by the Euler-beam model is in
good agreement with experimental data (Garg et al., 1998), resonant frequencies and vibrational modes
of CNTs given by the cantilever beam model agree well with experiments (Treacy et al., 1996; Poncharal
et al., 1999), and sound velocity predicted by the Euler-beam model agrees well with the data obtained
by other methods (Popov et al., 2000). In particular, non-coaxial resonance of multiwall carbon nano-
tubes (MWNTs) first predicted by a simple multiple-beam model (Yoon et al., 2002) is found to well
agree with more recent atomistic simulations (Zhao et al., 2003; Li and Chou, 2004). Since elastic beam
models enjoy simple mathematical formulas, they have the potential to identify the key parameters
affecting basic mechanical behavior of CNTs (and thus rule out other less important parameters), predict
new physical phenomena, and stimulate and guide further experiments and molecular dynamics
simulations.

Here, as usual, we shall neglect gravity effect and assume that the constraint for axial displacement of the
cantilever CNT is absent or negligible. Thus, vibration and flutter instability of a cantilever CNT conveying
fluid can be described by the model (Chen, 1987; Paidoussis and Li, 1993; Paidoussis, 1998; Yoon et al.,
2005)

o*w *w *w o*w

E[w+MU2@+2MUM+(M+m)W+Kw:O (1)
where x is the axial coordinate, ¢ is time, w(x, ?) is the deflection of the CNT, E and I are Young’s modulus
and the moment of inertia of the cross-section of the CNT, m is the mass of CNT per unit axial length
(which is equal to the cross-sectional area of CNT multiplied by the mass density of CNTs), K is the Win-
kler constant of the surrounding elastic medium described as a Winkler-like elastic foundation (Paidoussis
and Li, 1993; Paidoussis, 1998; Yoon et al., 2005). In addition, the externally imposed tension and pressur-
ization are absent.

It is stressed that the role of internal moving fluid is characterized by two parameters of the fluid, its mass
density M (per unit axial length) and the mean flow velocity U (defined by the flow flux divided by the area
of the innermost cross-section of CNT). The wall-fluid interaction and the viscosity of fluid inside CNTs do
affect vibration and instability of CNT, but only through affecting the velocity distribution and the mean
flow velocity. Hence, the effect of the wall-fluid interaction and the viscosity of fluid is implicitly included in
the velocity distribution and the mean flow velocity, and will not explicitly appear in the governing Eq. (1).
Therefore, the present work focuses on the effects of internal moving fluid on vibration and flutter instabil-
ity, without concerning how the wall-fluid interaction and the viscosity of fluid affect the mean flow velocity
U or what applied pressure gradient is required to achieve such a flow inside CNTs.

To highlight the non-conservative nature of flow-induced flutter instability of cantilever CNTs, it is sta-
ted that, as explained by Benjamin (1961) and Paidoussis and Li (1993), the work (A1) done by the fluid
forces to the elastic tube over a cycle of oscillation of period 7 is
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where (0w/0r); and (0w/0x) are the lateral velocity and the slope at the end x = L, respectively. For sup-
ported CNTs, because (0w/dr); is identically zero, the first integral on RHS is zero. In addition, because the
vibration is strictly periodic, the second term on RHS also vanishes. Hence, AW = 0 and vibration of sup-
ported CNTs is conservative. For a cantilever CNT, however, because the deflection and slope of the free
end are not identically zero and the amplitude at ¢t = T is not exactly the same as its value at = 0, none of
the two integrals on RHS is identically zero. When U is sufficiently small, it turns out that the first term
within the first square brackets is dominant over all other terms, it follows that AW <0, and thus the ampli-
tude decays with time and the cantilever CNT is damped. However, this ceases to be true for sufficiently
high flow velocity U which could lead to AW > 0. Thus cantilever CNTs could gain energy from the flow,
and vibration would be amplified for sufficiently high flow velocity. In other words, for sufficiently high
flow velocity, cantilever CNTs could lose stability by flutter. We believe that flutter instability of cantilever
CNTs has significant consequences to the design of CNTs as nanopipes conveying fluid.

3. Results and discussions

For free vibration of a cantilever CNT shown in Fig. 1, boundary conditions are

0.0 =200 =000 =T = o 3
WO = Y T e W T Wl T
Consider solutions of the form

w(x, t) = Re[Ce™e™] (4)

where C is a constant, and o is the complex circular frequency. Substitution of (4) into Eq. (1) gives
Elo* — MU?a*> — 2MUwo — (M + m)* + K =0 (5)

which determines four complex roots a«, (n = 1,2, 3,4) as a function of w. The complete solution of Eq. (1) is
thus

w(x,t) = Re

4 . .
Z Cnew,,xelwt‘| (6)
n=1

where the constants C, (n = 1,2, 3,4) should be determined by the boundary condition (3). Thus, substitut-
ing (6) into (3) yields
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The condition for existence of a non-trivial solution gives the characteristic equation in @ which deter-
mines the eigenvalues and the associated vibrational modes. For very small U, it turns out that the imag-
inary parts of all eigenvalues, which represent the decaying rate of amplitude, are non-negative and hence
the vibration amplitude decays with time. As U increases, the imaginary parts of @ vary and at least one of
them will reduce to zero at a certain critical flow velocity U = U, beyond which the imaginary part of
changes sign from positive to negative and the amplitude will grow with time. This indicates the onset
of flutter instability. In this paper, we shall confine ourselves to the effect of internal moving fluid on the
first three vibrational modes of the CNT described by (1). Here, as usual, the first, second, and third vibra-
tional modes are defined by the three lowest vibrational frequencies at U= 0. For U > 0, however, all fre-



J. Yoon et al. | International Journal of Solids and Structures 43 (2006) 3337-3349 3341

quencies vary with U. Hence, it is possible that the frequency of a higher mode may be even lower than the
frequency of a lower mode for sufficiently high flow velocity U. For example, the frequency of mode 2 may
be even lower than the frequency of mode 1 for sufficiently high U.

The examples of CNTs considered here are: (I) MWNT with the outermost radius R = 40 nm and thick-
ness 1 =20 nm, (II) MWNT with R = 50 nm and /& = 10 nm (Galanov et al., 2002), where the thickness / is
defined as the difference between the outermost and the innermost radii. Here, two different aspect ratios of
CNTs, L/2R = 10 or 50, are considered. On the other hand, to be specific, water has been considered as the
fluid inside CNTs. The mass density of CNTs is 2.3 g/cm® with Young’s modulus E of 1 TPa, and the mass
density of water is 1 g/cm®. In addition, to study the effect of a surrounding elastic medium modeled as a
Winkler-like elastic foundation, the Winkler-constant K is considered to have a value ranging from 1 KPa
or 1 MPa (for soft materials such as bio-tissue, Shull, 2002), to 1 GPa (for moderately stiff materials like
polymers). Finally, the available data in the literature for the flow velocity inside CNTs range from
400 m/s (Supple and Quirke, 2003) to 2000 m/s (Tuzun et al., 1996), or even up to 50000 m/s (Mao and
Sinnott, 2000). Therefore, to cover a wide range of flow velocity inside CNTs, we shall consider the flow
velocity U up to 10000 m/s, in spite of the fact that the available data for the flow velocity of water in CNTs
(of very small innermost diameter) are much lower than this value.

In what follows, vibrational frequency f'= Re(w/(2r)) and the decaying rate Im(w/(2n)) of cantilever
CNTs conveying fluid are calculated and shown in Figs. 2-13 for CNTs with or without being embedded
in a surrounding elastic medium characterized by the Winkler constant K. The main results are summarized
as follows.

(1) The results of Figs. 2-13 indicate that internal moving fluid has a substantial effect on vibrational
frequencies (=Re(w/(2x))) and the decaying rate (=Im(w/(2n))) of cantilever CNTs conveying fluid. This
effect is more significant at higher flow velocity even for CNTs of smaller aspect ratio (L/2R = 10), and
for CNTs of larger aspect ratio (such as L/2R = 50, as shown in Figs. 5-7, and 11-13) even at lower flow
velocity, but is less significant for CNTs of smaller aspect ratio (such as L/2R = 10, as shown in Figs. 2-4
and 8-10) at lower flow velocity.
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Fig. 2. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case I, L/2R = 10, mode 1).
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Fig. 3. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case I, L/2R = 10, mode 2).
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Fig. 4. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case I, L/2R = 10, mode 3).

(2) Vibrational frequencies (=Re(w/(2n))) of CNTs conveying fluid vary with increasing flow velocity.
For example, in Case I with L/2R = 50 and K = 0 (Fig. 5), vibrational frequency of mode 1 increases slowly
up to U = 1500 m/s, then begins to decrease, and finally reduces to zero around U = 2000 m/s and remains
zero until U= 2700 m/s. So, between U = 2000 m/s and 2700 m/s, the frequency of the first mode is iden-
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Fig. 5. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case I, L/2R = 50, mode 1).
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tically zero (Fung, 1993), which means that the amplitude of deflection of the cantilever CNT decays mono-
tonically with time without backward and forward oscillation. In addition, for Case II with L/2R = 10 and
K =0, it is seen from Fig. 8 that the frequency of mode 1 reduces to zero around U = 2800 m/s and remains
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Fig. 8. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case II, L/2R = 10, mode 1).

zero until U = 4300 m/s. These phenomena qualitatively agree with the general results of cantilever elastic
tubes conveying fluid (Paidoussis, 1998).

(3) For lower flow velocity U, internal flow causes damping to cantilever CNTs in all modes and the
vibration amplitude of CNTs decays with time. For example, for L/2R = 10 and 50, the cantilever CNTs



Fig. 9. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case II, L/2R = 10, mode 2).

Fig. 10. Frequency and the decaying rate of amplitude as a function of the flow velocity (Case II, L/2R = 10, mode 3).
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in all cases discussed here are damped for flow velocity below 6000 m/s, and 1200 m/s, respectively. This
phenomenon is common for the examples I, II, with or without a surrounding elastic medium, as shown

in Figs. 2-13.
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(4) Without a surrounding elastic medium (K = 0), the critical flow velocity for flutter instability, at
which the decaying rate of amplitude changes from positive to negative and thus the amplitude starts to
grow, is inversely proportional to the aspect ratio (L/2R), while both vibrational frequency (=Re(w/
(2m))) and the decaying rate (=Im(w/(27))) are inversely proportional to square of the aspect ratio



J. Yoon et al. | International Journal of Solids and Structures 43 (2006) 3337-3349 3347

25
K=1MPa
Nz F
=
=
LS
: :‘:h'
8 18
N E
ST Re [o/(27)]
Q9 !
¢g | Im [e/(2m)]
Jd
> E) 0.5 J
S>> |
S® | eeememmemmmm
Q | eames=me IS =
=1 2 — «. K=1MPa
g2 of-r > 1
o 0O Mg e
I o3 Sl
_______ i
K=0,1KPa O
-0.5 ~ N
o
‘\
1 I i I
0 500 1000 1500 2000

Flow velocity (m/s)
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(L/2R) (Figs. 2-13). For example, in Case I, the critical flow velocities U, for flutter instability (of mode 2)
are 7564 m/s and 1512 m/s for L/2R = 10 and 50, respectively (Table 1). On the other hand vibrational fre-
quencies (=Re(w/(2n))) of mode 1 at U = 0, at which the decaying rate is zero for both cases, are 380 MHz
and 15 MHz for L/2R = 10 and 50, respectively. On the other hand, for the same aspect ratio (L/2R), the
effect of internal flow on vibrational frequencies (=Re(w/(2n))) and the decaying rate (=Im(w/(2x))) are
more significant for thin CNTs than for thicker CNTs. For example, for L/2R = 10, flutter instability oc-
curs at 7564 m/s for thicker CNT of smaller innermost radius (Case I), and at 6803 m/s for thin CNT of
larger innermost radius (Case II) (Table 1). This is attributed to the fact that when the outermost radius
is not very different, the restoring flexural force of CNTs of smaller innermost radius is significantly larger
than that of CNTs of larger innermost radius, and thus the destabilizing centrifugal force overcomes the
restoring flexural force for CNTs of smaller innermost radius only at a higher flow velocity.

(5) As studied in our recent work (Yoon et al., 2005), even a compliant surrounding elastic medium has a
significant effect on flow-induced instability of supported CNTs conveying fluid. Here, Let us consider the
role of a surrounding elastic medium in flutter instability of cantilever CNTs. First, with a very soft

Table 1

Critical flow velocity for flutter instability of cantilever CNTs

Winkler const. (K) 0 1 KPa 1 MPa 1 GPa

Aspect ratio (L/2R) 10 50 10 50 10 50 10

Case | Mode 1 - - - - - - -
Mode 2 (m/s) 7560 1510 7560 1510 7560 1790 10080
Mode 3 - - - - - - -

Case 11 Mode 1 - - - - - - -
Mode 2 (m/s) 12070 2410 12070 2420 12070 2440

Mode 3 (m/s) 6800 1360 6800 1360 6800 1490 7920
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surrounding elastic medium, such as bio-tissue with K =1 KPa (Shull, 2002), all phenomena for vibration
and flutter instability of cantilever CNTs are similar as those obtained above in the absence of a surround-
ing elastic medium (K = 0). For example, the critical flow velocity U, of Case II when L/2R = 50 and
K=1KPa is 1364 m/s, which is almost same as 1361 m/s of the same case with K =0 (Table 1). Hence,
it is concluded that a very soft surrounding elastic medium (say K < 1 KPa) has almost no effect on vibra-
tional frequencies and the decaying rate of cantilever CNTs conveying fluid.

(6) When the Winkler constant of the surrounding elastic medium increases to 1 MPa, the surrounding
elastic medium still doesn’t make any significant difference for CNTs of smaller aspect ratio L/2R = 10.
However, if the aspect ratio is larger (such as L/2R =50), a surrounding elastic medium with
K =1 MPa significantly reduces the sensitivity of vibrational frequency (=Re(w/(27))) and the decaying
rate (=Im(w/(2n))) to the internal flow velocity U. For example, the critical flow velocity U, of Case I with
L/2R = 50 increases from 1512 m/s for K =0 to 1789 m/s for K =1 MPa (Table 1). Hence, the role of a
surrounding elastic medium with K =1 MPa becomes significant for CNTs of larger aspect ratio, such
as those shown in Figs. 5-7, and 11-13.

(7) When a moderately stiffer surrounding elastic medium (such as polymer with K =1 GPa) is consid-
ered, the surrounding elastic medium has a more significant effect on vibrational frequency and the decay-
ing rate. For example, even for a short CNT (L/2R = 10), the critical flow velocity U, of Case I increases
from 7564 m/s when K = 0 to 10076 m/s when K = 1 GPa (Table 1). Therefore, it is concluded that a mod-
erately stiff surrounding elastic medium (with K = 1 GPa) has a significant effect on vibrational frequencies
and flutter instability even for CNTs of small aspect ratio L/2R = 10.

4. Conclusions

The influence of internal moving fluid on free vibration and flow-induced flutter instability of cantilever
CNTs is studied in this paper. Unlike supported CNTs which lose stability by static buckling, cantilever
CNTs lose stability by flutter at a certain critical flow velocity. Our results indicate that internal moving
fluid has a substantial effect on vibrational frequencies and the decaying rate of amplitude, and the critical
flow velocity for flutter instability in some cases may fall within the range of practical significance. On the
other hand, our results indicate that a moderately stiff surrounding elastic medium can significantly reduce
the effect of internal moving fluid on vibrational frequencies and suppress or eliminate the flow-induced
flutter instability, while a very soft surrounding elastic medium has almost no effect on vibrational frequen-
cies and the decaying rate of amplitude. We believe that these results provide useful data for the proposed
application of CNTs as nanopipes conveying fluid. Also, these data may be used to develop a possible
method to estimate the internal flow velocity by detecting the changes in resonant frequencies and the
decaying rate of amplitude of CNTs conveying fluid.
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